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LETTER TO THE EDITOR 

Fluctuation-induced kinetics of reversible reactions 

G S Oshanin, A A Ovchinnikov and S F Burlatsky 
Institute of Chemical Physics, Academy of Sciences of USSR, 117334 Kosygin Street 4, 
MOSCOW V-334, USSR 

Received 16 March 1989, in final form 13 July 1989 

Abstract. The influence of spatial density fluctuations on the kinetics of a reversible reaction 
A + B ++ C involving charged particles is investigated. New explicit expressions for the 
long-time approach of mean A and B densities to equilibrium are obtained. 

Fluctuation effects in the theory of diffusion-controlled processes have gained consider- 
able interest in recent years. On the one hand this is due to the growing number of 
its applications in physics, chemical physics and biology. On the other hand it can be 
accounted for by the fact that this problem has now taken an appropriate place among 
the related problems of statistical physics in which fluctuation-induced behaviour is 
essential. We should also mention a great number of fractal system investigations 
where the fluctuations of spatial structure determine an anomalous kinetic behaviour 
of diffusion-controlled processes. 

In mean-field considerations it was assumed that after some characteristic time t L  
( tL = L2/ D where L is the mean size of spatial inhomogeneity, and D is a diffusion 
coefficient) a steady regime is established when the kinetics of bimolecular reactions 

A t - B e C  or A + A e S  

is independent of inhomogeneity in the initial spatial distribution of reagents A and 
B. In this approximation the long-time approach to the equilibrium values of the mean 
densities is determined by exponential dependence upon time. 

It was first shown by Zeldovich (1977), Ovchinnikov and Zeldovich (1978) and 
Burlatsky (1978) and, subsequently, by Toussaint and Wilczek (1983) and Kang and 
Redner (1984) that in the case of an irreversible reaction A + B + inert at equal initial 
mean A and B densities, thermodynamical fluctuations in the spatial distributions of 
the reagents lead to a slowing down of the long-time kinetics (as compared to the 
mean-field predictions c,( t )  = c,( t )  = c d (  t ) ;  C,( t )  - t - ' l 2 ,  c,( t )  -In t / t ,  c,( t )  - r - l ,  

where d is space dimensionality). The long-time stage is determined by the diffusive 
smoothing of initial random inhomogeneities which results in the dependence c d (  t )  - 

Besides, Zeldovich and Ovchinnikov (1977,1978) and Kang and Redner (1985) 
have shown that the long-time kinetics of reversible reactions involving uncharged 
particles is also determined by fluctuation effects and with t+oo the approach to 
equilibrium is defined by a power law CA( t )  - C,(oo) - ( Dt) -d /2 .  

Fluctuation effects are essentially increased in the system prepared by a steady 
external source. If particles A and B are generated in the reaction bath independently 
of each other by an external source with Poissonian properties, the irreversible reaction 
between them leads to the appearance of spatial correlations in reagent distributions. 

t - d / 4 .  
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The long-wave asymptotics of the fluctuation spectrum are not of Poissonian type 
(Ovchinnikov and Burlatsky 1986, Zhang 1987, West et a1 1989), which results in the 
long-time kinetics of irreversible recombination after the external source is turned off; 
for d = 3 C,(r) - t-”4. For systems with d less then the dimension of random walk 
d ,  (for compact spaces d, = 2 )  the existence of an essential peculiarity in the steady- 
state fluctuation spectrum leads to the division of the reaction bath into macroscopic 
domains containing only one sort of reagent. This effect was predicted by Ovchinnikov 
and Burlatsky (1986), Zhang (1987), Burlatsky and Pronin (1989) and West et al(1989) 
and confirmed by numerical experiment on fractals (Anacker and Kopelman 1987). 

The goal of the present letter is to investigate the long-time kinetics of the reversible 
bimolecular reaction A + B ++ C involving charged particles under different types of 
external generation of reagents. 

The rate of local densities of diffusing species A and B charged by qA and qB 
respectively is governed by 

C j ( r ,  t ) = - K f l [ C A ( r ,  f ) C B ( r I ,  t)]+Djdiv(grad-pqjgrad U(r ,  t ) ) C , ( r ,  t )  

+K-Cc(r ,  t ) + z , ( r ,  t ) + I j ( r ,  t )  
(1) 

P = l / k B T  j = A , B  qA = - q B  = 

Nd 1 dr,  6(/ril - 1) = 1. J f, = Nd 

Here 1 is the reaction radius, DA and DB are the diffusion coefficients (further on we 
shall regard DA = DE = Dc = D/2) ;  q ( r ,  t )  are the terms which consider the fluctu- 
ations of diffusive fluxes (Gardiner 1983), I,(r,  t )  are random source terms, and K and 
K- are the ‘chemical’ rate constants of direct and backward reactions. The potential 
U ( r ,  t )  submits to the Poisson equation 

dr,  6 ( l r -  riI - I)[. . .] 

div grad U (  r, t )  = -47rq( C,( r, t )  - CA( r, t ) ) .  ( 2 )  
The reagent densities are equal to 

‘,(‘, ‘)= c J ( t ) + c F ( r 9  (cl”(r, t ) )  = 0 j = A ,  B, C 
where C,( t )  are the mean values, while c,”(r, t )  are random spatial deviations and angle 
brackets refer to volume average. Averaging ( l ) ,  we obtain that C( t )  (here we consider 
the case of equal initial mean A and B densities, C ( t )  = C A ( ? )  = C,(t))  obeys the 
equation 

( t )  = - K ( c’( t )  + ( il [ c: ( r, t ) c’xB( rl , 1)) + K-  CC ( + ( I A ,  B (  r, t ) )  

+ K9(2c%r, t)c*B(r, t )  - ( d ( r ,  t ) ) * - ( C % ,  t ) ) ’ )  (3) 
where K,  = 47rq’DP. The rate of Cc( t )  is governed by the condition that the total 
number of reacting particles be conserved, C( t )  + Cc ( t )  = 0. 

Let us determine the pair correlation functions 

G,,(R, t ) = ( f R [ c ? ( r ,  t)c,*(ri, t)]) LR = dr18(r - r l -R)[ .  . .] i, j = A ,  B, C 

where R is the d-dimensional correlation parameter. For G, we get the following 
system of reaction-diffusion equations: 

GJJ = - 2 c  ( t )  ( K  - K9) G A B  - 2 c( t )( K + K,) Ga 

A i  
2 K -  GJ, + DARG, - D c  ( ?)A& ( R )  

+ ( R, t 1 - 2 K L ~ B  + 2Kq ( TAJB - 1;IJ ) j = A ,  B (4a) 
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GAB = -KC(tj(2GAB+ GAA+ GEE) - KqC(t)(2GAB - GAA - G E E )  + K-(GAC + GBC) 

+DARGAB+ZAB(R, ~ ) - K ( T A A B +  TABB) (4b) 

+ ( T A ~ B  - TABC + K q (  TABC - T j C )  j = A ,  B (4c) 

+ Zcc ( R ,  t )  + 2KTABc (4d)  

&IC = KC ( t ) (  G,, f GAB - 2 GJC ) + K-( Gcc - G ~ C  ) + DARGJC + 4~ ( R ,  t )  

6;~- = KC( t ) (  GAc 4- GBc) - 2K-Gcc + DARGcc - Dee ( t ) A R 8 (  R )  

where A ,  denotes the d-dimensional Laplacian, 6 ( R )  is a delta function and T , ] k  are 
third-order correlation functions. 

In order to calculate the pair correlation functions G, we shall make the following 
assumption. Assume that the correlation functions of the fourth-order H A B ,  can be 
decoupled and represented as a composition 

H A B r ~ ( R ,  t )  = GAB(1, t)Gz,(R, ( 5 )  

then the system of equations which governs the time evolution of TJk will not have 
non-trivial solutions and (4) will be self-contained. As was shown by Burlatsky and 
Ovchinnikov (1987), such an assumption leads to an asymptotically exact description 
of the correlation properties of related diffusion-reaction systems at the large-R limit 
and, hence, to asymptotically exact long-time dependences of mean densities upon 
time. Besides, in the long-time dependence C( t )  = pfCW the indicator w is determined 
exactly, while the coefficient p, dependent on the diffusion coefficients and rate 
constants, is defined up to a numerical multiplier. In particular, in terms of such an 
assumption as (5), the well known dependence C( t )  - t -d ’4  was obtained by Burlatsky 
(1978). In general, for intermediate R the representation ( 5 )  is not quite valid. It was 
shown by Burlatsky et a1 (1989) that for diffusion-reaction systems of uncharged 
species TJ1 has a singularity at ]RI = 1- T,,(R, t )  = NdK-’C(t)8(IRI - l ) ,  caused by the 
discrete nature of the spatial distributions of the particles. This singularity leads to 
the appearance of short-wave pair correlations and, hence, Smoluchowsky-type renor- 
malisation of the rate constants in the equation for the mean density evolution 

( t )  = - K A  t ) /  ( C’( t )  + G A B  ( 1, t )  + K A t )  cc ( t )  + ( [ A ,  B (r, t ) ) .  ( 6 )  

Let us emphasise that this renormalisation is essential only for intermediate times 
(when we can neglect GAB( 1, t ) )  and determines a correct Smoluchowsky-type inter- 
mediate exponential dependence, while the goal of our letter is to define the long-time 
fluctuation-induced laws, connected with the decrease of pair correlations GAB( I, t )  
and independent of Keff( t ) .  Hence, we shall present asymptotic expressions for Keff( f )  
omitting intermediate derivations which go beyond the framework of this paper and 
will be published elsewhere: 

&ff( t )  = Kc& / ( K c  + K d  K ,  = K exp( ro/ 1) 

where ro is the Onsager radius. Smoluchowsky-Debye-type constants are equal to 

K,  = i K q ( l  +coth(ro/21)) K 2  = 4 ~ D / l n (  Dt/ 1’) 

Thus, we have derived the self-contained system of reaction-diffusion equations 
(4) (with TJk = 0) and (6) determining the kinetics of reversible reactions involving 
charged particles. 

K;fi( l )  = K + K d  

K ,  = ( D /  ~ t ) ” ~ .  

Let us consider a few cases of initial conditions for equations (4) and (6). 
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(i)  In the case of instant generation of non-correlated particles when A and B are 
‘quickly’ (time of generation is much less than the ‘chemical’ time t c h =  

(2KcC(0) + K-)-’)  injected into the reaction bath with constant mean densities C(0) 
and Cc (0) and statistically independent fluctuations, the initial distribution can be 
considered Gaussian and &correlated 

GJR, 0) = C,(O)+VR) i,j = A, By C 

where 8, is the Kroneker delta. 

value of GAB(R, 0) is not equal to zero, contrary to case (i), 
(ii) Under the instant A and B generation by correlated pairs of radius rg the initial 

GAB(& 0) = NdC(0)a(IR/-rg) while GAC(R, 0) = GBc(R, 0) = 0. 

This case is essentially important since it imitates the majority of reaction-diffusion 
processes involving charged particles-electrons and holes, radical pairs. 

Under instant generation from (4) (with T,,k = 0) we obtain the following long-time 
expressions for GAB(/, t ) .  

For initial conditions (i): 

GAB(Z, t )  = GAB(I) -ShCK2tfh(Dt)-d’2+Small corrections. 

Here AC= C(0)-CA, where CA is a steady-state solution of (6) with (Z)=O and 
GAB([) is an equilibrium solution of (4). 

For initial conditions (ii): 

GAs(Z, t )  = GAB(Z)+j(CA - C(O)r~/(Dt))(Dt)-”/’+small corrections. 

Linearising (6) near the steady-state value CA we find that the long-time approach of 
the mean density to equilibrium is defined by the decrease of pair correlations and 
described by power-law dependence, contrary to the predictions of exponential mean- 
field theories: 

for (i) c(t) = CA+AAc(Dt) -d /2  A=KcKZt fh /2 (2KcC~+K_)  (7U) 

for (ii) C (  t ) = C A  - A( C A  - C( 0) (/ Dt )( Dt)-d’2 ( 7 6 )  
It is important that at the large-t limit C ( t )  ( 7 b )  is less than CA and, hence, C(t)  

can be a non-monotonic time function. 
(iii) Let us consider one more type of A and B external generation often used in 

radiation physics. In the reaction bath where the reversible reaction takes place there 
acts an external source which breaks the direct reaction product C into a pair of 
reagents A and B. The radius of the generated pair is equal to rg. The kinetics of 
such a process is determined by the system of equations (4), ( 6 ) ,  where the averaged 
source terms are equal to 

J,(R, t )  = -zJc(K t )  = ZCC(R, t )  = Zcc(t)a(R) 

ZAB(R3 t)=INdCC(t)a(IRI-rg) (Z(r, t ) )  = G ( t )  

where Z is the mean intensity of the external source. From (4), (6) we get the following 
expression for the leading terms at t + 00 of the Fourier image of GAB 

GAB(P, t ) =  GAB(P)(~ - ~ x P ( - D ~ P ~ ) )  

where 

G A B  ( p 1 p - t  0 = - fZCCF( p ,  ‘g ) f h/  Dp 
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Here F ( p ,  r g )  is the Fourier image of the function F ( R ,  rg )  = S ( R )  - NdS(lR( - rg) .  The 
expression given above for G A B (  p )  is valid for dimensionality of space. When rg+ CO 

an equilibrium fluctuation spectrum G A B (  p )  has a peculiarity, G A B  - p 2  at p + 0, which 
leads to the effect of macroscopic segregation in reversible reactions of charged particles. 
Let us note that this effect was recently predicted for irreversible reactions of uncharged 
species by Ovchinnikov and Burlatsky (1986), Zhang (1987), West er a1 (1989). For 
reversible reactions of charged species we get from (4) and (6) that in 3~ the essential 
peculiarity in an equilibrium fluctuation spectrum causes the change of time degree 
indicator in the long-time approach to equilibrium 

where constant B = KcC*,K!t%,/D(2K,CT,+ Z + K - ) ;  CT,, C*, are the steady-state 
solutions of (6) with ( I ( r ,  t ) )  = IC,(r). With finite values of rg the steady-state spectrum 
of fluctuations is of Poissonian type due to the geminate recombination and the mean 
density approach to equilibrium is determined by the power dependence 

C (  t )  = CT, - B( Dt)-’I2 (7c) 

C(  t )  = CT, - Br;(Dt)-d’*.  
Equations (4) and (6), together with some assumptions about the structure and 

eigenvalue spectrum of diffusion-type equations, allow us to obtain an enclosed 
description of fluctuation-induced kinetics of bimolecular reactions on fractal struc- 
tures. It was shown by Cates (1985), O’Shaughnessy and Procaccia (1985) that the 
Green function of a diffusive-type equation has the following structure on fractals: 

S ( R ,  t )  = D2RS(R,  t )  

lim W = constant 

S ( R ,  t )  = (Dt)-dl’dwW(R/(Dt)l’dw) 

1-a3 

where 2R is a Laplacian-type operator, d f  and d ,  are the fractal dimension and the 
dimension of the random walk respectively. From (4) and (6) we get: 

for (i) c(t) = C , + A A C ( D ~ ) - ~ ~ / ~ W  ( s a )  

for (ii) C( t )  = c A ( 1  -A(Dt)-dr’dw).  (8b) 
For the reversible reactions of charged species followed by external generation (iii) 

the equilibrium spectrum of fluctuations G A B (  p )  is not of Poisson type for any values 
of r g :  G A B ( p )  - P * - ~ w  when p +  0, contrary to the case of compact spaces. Evidently, 
such a difference can be accounted for by the suppression of the geminate recombina- 
tion-particles A and B generated in one pair turn out to be on different sites of a 
fractal and the ‘chemical’ path between them will be much longer then r g .  Correspond- 
ingly, the long-time approach to the equilibrium state is defined by following depen- 
dence: 

C( t )  = CT, - Bri( p = ( d , + 2 - d w ) / d , .  
The obtained results on the slow-down of the kinetics of the reversible reaction 

involving charged species have the following physical grounds. Random deviations 
of local densities of reagents from the mean values can be of two types. 

( a )  Fluctuations of different signs, i.e. local regions depleted or enriched by 
particles of one sort. In the case of an irreversible reaction with uncharged A and B 
these fluctuations determine the long-time kinetics. For charged particles these regions 
induce local electric fields which along with diffusion contribute to the smoothing of 
spatial inhomogeneity. It was shown by Zeldovich (1977) and Ohtsuki (1986) that in 
this case fluctuation effects are suppressed and the mean-field approximation is valid. 
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( b )  Fluctuations of the same sign, where the density deviations from the mean 
value both for A and B have the same value and sign. For irreversible reactions such 
fluctuations can only accelerate the mean density decrease. However, for reversible 
reactions, where the value 

M ( r ,  t ) =  CA(r,  t ) + C B ( r ,  t )+2Cc(r ,  t )  fi( r, t )  = DA,M(  r, t )  

is conserved and the total charge in such regions equals zero, these deviations are 
smoothed only by diffusion which causes the power-law approach to the equilibrium 
fluctuation spectrum. 

Our results and those for uncharged species (Zeldovich and Ovchinnikov 1977, 
1978, Kang and Redner 1985) allow us to make some general conclusions. 

Fluctuation peculiarities and the structure of the equilibrium state in reversible 
bimolecular (and higher-order) reactions can be accounted for by the existence of 
linear combinations of reagent local densities which do not change in the course of 
the elementary reaction. For instance, it is the sum of reagents and reaction product 
local densities M ( r ,  t ) .  Since the law of conservation of matter is valid for any set of 
successive and parallel reactions, at least one such combination exists for any reversible 
conversions. Hence, the long-time approach to the equilibrium state for any reversible 
reactions (higher than first order) with diffusion transport of species is a diffusion- 
controlled process and is described by power dependences upon time. The time degree 
indicator is determined by the fluctuation spectrum of the initial equilibrium spatial 
distribution of reagents. 

In low-dimensional systems (with d , ( d )  less then the dimension of random walk 
d,(2)) where the external source breaks the direct reaction product into non-correlated 
pairs of reagents ( r g  is equal to infinity) diffusion process fail to smooth the spatial 
fluctuations generated by the source. In such systems despite the fact that the mean 
density equation has the steady-state solution, fluctuation effects become essentially 
increased and the equilibrium is destroyed. 
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